Copied to
clipboard

G = C62.74C23order 288 = 25·32

69th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.74C23, D6:7(C4xS3), Dic32:2C2, C32:11(C4xD4), C3:D12:3C4, Dic3:2(C4xS3), C6.142(S3xD4), Dic3:C4:21S3, D6:Dic3:22C2, (C3xDic3):14D4, (C2xC12).261D6, C3:4(Dic3:5D4), C6.14(C4oD12), Dic3:7(C3:D4), (C2xDic3).75D6, (C22xS3).66D6, C6.11D12:16C2, (C6xC12).235C22, C6.15(Q8:3S3), C2.5(D6.6D6), (C6xDic3).68C22, (S3xC2xC4):11S3, C2.22(C4xS32), (C2xC4).49S32, C3:2(C4xC3:D4), C6.21(S3xC2xC4), (S3xC2xC12):19C2, C2.3(S3xC3:D4), (S3xC6):13(C2xC4), C22.42(C2xS32), C6.36(C2xC3:D4), (C3xDic3):4(C2xC4), (C3xC6).101(C2xD4), (S3xC2xC6).79C22, (C3xDic3:C4):21C2, (C2xC3:D12).8C2, (C3xC6).44(C4oD4), (C2xC6.D6):11C2, (C2xC6).93(C22xS3), (C3xC6).20(C22xC4), (C22xC3:S3).20C22, (C2xC3:Dic3).51C22, (C2xC3:S3):3(C2xC4), SmallGroup(288,552)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C62.74C23
C1C3C32C3xC6C62S3xC2xC6C2xC3:D12 — C62.74C23
C32C3xC6 — C62.74C23
C1C22C2xC4

Generators and relations for C62.74C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ce=ec, ede-1=b3d >

Subgroups: 794 in 205 conjugacy classes, 62 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C4xD4, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C4xDic3, Dic3:C4, D6:C4, C6.D4, C3xC4:C4, S3xC2xC4, S3xC2xC4, C2xD12, C2xC3:D4, C22xC12, C6.D6, C3:D12, S3xC12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, Dic3:5D4, C4xC3:D4, Dic32, D6:Dic3, C3xDic3:C4, C6.11D12, C2xC6.D6, C2xC3:D12, S3xC2xC12, C62.74C23
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C3:D4, C22xS3, C4xD4, S32, S3xC2xC4, C4oD12, S3xD4, Q8:3S3, C2xC3:D4, C2xS32, Dic3:5D4, C4xC3:D4, D6.6D6, C4xS32, S3xC3:D4, C62.74C23

Smallest permutation representation of C62.74C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 36)(2 31)(3 32)(4 33)(5 34)(6 35)(7 21)(8 22)(9 23)(10 24)(11 19)(12 20)(13 38)(14 39)(15 40)(16 41)(17 42)(18 37)(25 46)(26 47)(27 48)(28 43)(29 44)(30 45)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 30 45 21)(8 29 46 20)(9 28 47 19)(10 27 48 24)(11 26 43 23)(12 25 44 22)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 33 10 36)(8 34 11 31)(9 35 12 32)(13 27 16 30)(14 28 17 25)(15 29 18 26)(37 47 40 44)(38 48 41 45)(39 43 42 46)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20)(13,38)(14,39)(15,40)(16,41)(17,42)(18,37)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20)(13,38)(14,39)(15,40)(16,41)(17,42)(18,37)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,36),(2,31),(3,32),(4,33),(5,34),(6,35),(7,21),(8,22),(9,23),(10,24),(11,19),(12,20),(13,38),(14,39),(15,40),(16,41),(17,42),(18,37),(25,46),(26,47),(27,48),(28,43),(29,44),(30,45)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,30,45,21),(8,29,46,20),(9,28,47,19),(10,27,48,24),(11,26,43,23),(12,25,44,22)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,33,10,36),(8,34,11,31),(9,35,12,32),(13,27,16,30),(14,28,17,25),(15,29,18,26),(37,47,40,44),(38,48,41,45),(39,43,42,46)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F4G4H4I4J4K4L6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order122222223334444444444446···666666661212121212···121212121212121212
size1111661818224223333666618182···2444666622224···4666612121212

54 irreducible representations

dim111111111222222222224444444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3S3D4D6D6D6C4oD4C4xS3C3:D4C4xS3C4oD12S32S3xD4Q8:3S3C2xS32D6.6D6C4xS32S3xC3:D4
kernelC62.74C23Dic32D6:Dic3C3xDic3:C4C6.11D12C2xC6.D6C2xC3:D12S3xC2xC12C3:D12Dic3:C4S3xC2xC4C3xDic3C2xDic3C2xC12C22xS3C3xC6Dic3Dic3D6C6C2xC4C6C6C22C2C2C2
# reps111111118112321244441111222

Matrix representation of C62.74C23 in GL6(F13)

100000
010000
001000
000100
0000112
000010
,
1210000
1200000
0012000
0001200
000010
000001
,
0120000
1200000
0012200
000100
0000120
0000012
,
1200000
0120000
0011100
0011200
0000012
0000120
,
100000
010000
0012200
000100
000050
000005

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,11,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C62.74C23 in GAP, Magma, Sage, TeX

C_6^2._{74}C_2^3
% in TeX

G:=Group("C6^2.74C2^3");
// GroupNames label

G:=SmallGroup(288,552);
// by ID

G=gap.SmallGroup(288,552);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,219,58,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<