metabelian, supersoluble, monomial
Aliases: C62.74C23, D6⋊7(C4×S3), Dic32⋊2C2, C32⋊11(C4×D4), C3⋊D12⋊3C4, Dic3⋊2(C4×S3), C6.142(S3×D4), Dic3⋊C4⋊21S3, D6⋊Dic3⋊22C2, (C3×Dic3)⋊14D4, (C2×C12).261D6, C3⋊4(Dic3⋊5D4), C6.14(C4○D12), Dic3⋊7(C3⋊D4), (C2×Dic3).75D6, (C22×S3).66D6, C6.11D12⋊16C2, (C6×C12).235C22, C6.15(Q8⋊3S3), C2.5(D6.6D6), (C6×Dic3).68C22, (S3×C2×C4)⋊11S3, C2.22(C4×S32), (C2×C4).49S32, C3⋊2(C4×C3⋊D4), C6.21(S3×C2×C4), (S3×C2×C12)⋊19C2, C2.3(S3×C3⋊D4), (S3×C6)⋊13(C2×C4), C22.42(C2×S32), C6.36(C2×C3⋊D4), (C3×Dic3)⋊4(C2×C4), (C3×C6).101(C2×D4), (S3×C2×C6).79C22, (C3×Dic3⋊C4)⋊21C2, (C2×C3⋊D12).8C2, (C3×C6).44(C4○D4), (C2×C6.D6)⋊11C2, (C2×C6).93(C22×S3), (C3×C6).20(C22×C4), (C22×C3⋊S3).20C22, (C2×C3⋊Dic3).51C22, (C2×C3⋊S3)⋊3(C2×C4), SmallGroup(288,552)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.74C23
G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ce=ec, ede-1=b3d >
Subgroups: 794 in 205 conjugacy classes, 62 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C4×D4, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C22×C12, C6.D6, C3⋊D12, S3×C12, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C22×C3⋊S3, Dic3⋊5D4, C4×C3⋊D4, Dic32, D6⋊Dic3, C3×Dic3⋊C4, C6.11D12, C2×C6.D6, C2×C3⋊D12, S3×C2×C12, C62.74C23
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, C3⋊D4, C22×S3, C4×D4, S32, S3×C2×C4, C4○D12, S3×D4, Q8⋊3S3, C2×C3⋊D4, C2×S32, Dic3⋊5D4, C4×C3⋊D4, D6.6D6, C4×S32, S3×C3⋊D4, C62.74C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 36)(2 31)(3 32)(4 33)(5 34)(6 35)(7 21)(8 22)(9 23)(10 24)(11 19)(12 20)(13 38)(14 39)(15 40)(16 41)(17 42)(18 37)(25 46)(26 47)(27 48)(28 43)(29 44)(30 45)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 30 45 21)(8 29 46 20)(9 28 47 19)(10 27 48 24)(11 26 43 23)(12 25 44 22)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 33 10 36)(8 34 11 31)(9 35 12 32)(13 27 16 30)(14 28 17 25)(15 29 18 26)(37 47 40 44)(38 48 41 45)(39 43 42 46)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20)(13,38)(14,39)(15,40)(16,41)(17,42)(18,37)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36)(2,31)(3,32)(4,33)(5,34)(6,35)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20)(13,38)(14,39)(15,40)(16,41)(17,42)(18,37)(25,46)(26,47)(27,48)(28,43)(29,44)(30,45), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,36),(2,31),(3,32),(4,33),(5,34),(6,35),(7,21),(8,22),(9,23),(10,24),(11,19),(12,20),(13,38),(14,39),(15,40),(16,41),(17,42),(18,37),(25,46),(26,47),(27,48),(28,43),(29,44),(30,45)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,30,45,21),(8,29,46,20),(9,28,47,19),(10,27,48,24),(11,26,43,23),(12,25,44,22)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,33,10,36),(8,34,11,31),(9,35,12,32),(13,27,16,30),(14,28,17,25),(15,29,18,26),(37,47,40,44),(38,48,41,45),(39,43,42,46)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 12O | 12P | 12Q | 12R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | D6 | D6 | D6 | C4○D4 | C4×S3 | C3⋊D4 | C4×S3 | C4○D12 | S32 | S3×D4 | Q8⋊3S3 | C2×S32 | D6.6D6 | C4×S32 | S3×C3⋊D4 |
kernel | C62.74C23 | Dic32 | D6⋊Dic3 | C3×Dic3⋊C4 | C6.11D12 | C2×C6.D6 | C2×C3⋊D12 | S3×C2×C12 | C3⋊D12 | Dic3⋊C4 | S3×C2×C4 | C3×Dic3 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | Dic3 | Dic3 | D6 | C6 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C62.74C23 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 11 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,11,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;
C62.74C23 in GAP, Magma, Sage, TeX
C_6^2._{74}C_2^3
% in TeX
G:=Group("C6^2.74C2^3");
// GroupNames label
G:=SmallGroup(288,552);
// by ID
G=gap.SmallGroup(288,552);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,219,58,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e^-1=b^3*d>;
// generators/relations